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Abstract. Population dynamics are often correlated in space and time due to correlations in envi-
ronmental drivers as well as synchrony induced by individual dispersal. Many statistical analyses of
populations ignore potential autocorrelations and assume that survey methods (distance and time
between samples) eliminate these correlations, allowing samples to be treated independently. If these
assumptions are incorrect, results and therefore inference may be biased and uncertainty underesti-
mated. We developed a novel statistical method to account for spatiotemporal correlations within den-
dritic stream networks, while accounting for imperfect detection in the surveys. Through simulations,
we found this model decreased predictive error relative to standard statistical methods when data were
spatially correlated based on stream distance and performed similarly when data were not correlated.
We found that increasing the number of years surveyed substantially improved the model accuracy
when estimating spatial and temporal correlation coefficients, especially from 10 to 15 yr. Increasing
the number of survey sites within the network improved the performance of the nonspatial model but
only marginally improved the density estimates in the spatiotemporal model. We applied this model to
brook trout data from the West Susquehanna Watershed in Pennsylvania collected over 34 yr from
1981 to 2014. We found the model including temporal and spatiotemporal autocorrelation best
described young of the year (YOY) and adult density patterns. YOYdensities were positively related to
forest cover and negatively related to spring temperatures with low temporal autocorrelation and mod-
erately high spatiotemporal correlation. Adult densities were less strongly affected by climatic condi-
tions and less temporally variable than YOY but with similar spatiotemporal correlation and higher
temporal autocorrelation.

Key words: brook trout; dendritic network; detection probability; Gaussian random fields; spatially explicit;
spatiotemporal.

INTRODUCTION

Ecologists are concerned with understanding the abun-
dance and distribution of organisms in space and time, as
well as the biological processes and interactions that cause
these patterns. Surveys are frequently employed to estimate
spatiotemporal variation in abundance, with the goal of
inferring biological process. However, most statistical meth-
ods used in ecology have not explicitly accounted for spatial
correlation in the data beyond including covariates that are
themselves spatially autocorrelated and random effects
related to study design (e.g., ANOVA, GLM, linear and gen-
eralized linear mixed models; Hocking et al. 2013, Peterman
and Semlitsch 2014, DeWeber and Wagner 2014). Therefore
to use these regression methods, researchers must design
their studies to ensure that sample points are spaced such
that statistical residuals are not correlated. It is difficult to
know a priori how close is too close. Any residual autocorre-
lation violates regression model assumptions and leads to
biased results and potentially incorrect inference regarding
population distributions and environmental relationships
(Dormann et al. 2007). Additionally, information about the

spatial and temporal patterns provides potentially interest-
ing ecological insights that would not be gained if the data
were collected in a way to avoid autocorrelation. For these
reasons, a large field of spatial statistics has been developed
and applied to ecological problems (e.g., Ross et al. 2012,
Thorson et al. 2014, Conn et al. 2015).
Streams in a network are likely to have significant correla-

tion in time and space because of regional weather and the
hydrologic connections allowing movements and gradients
of chemical and physical properties. For example, stream
flow and temperature are predictably correlated along the
network and it is important to account for this correlation
when modeling these systems (Caissie 2006, Ver Hoef et al.
2006, Peterson et al. 2013). Similarly, organisms living in
streams are likely to respond to these underlying conditions
and their movements are often restricted to the dendritic
network creating spatial correlation in the abundance and
distribution of stream organisms (Grant et al. 2007, Peter-
son et al. 2013, Isaak et al. 2014). Spatial models that use
Euclidean distance are likely to perform poorly in stream
networks because streams in close overland proximity can
be completely unconnected or have large hydrologic dis-
tances (Ver Hoef et al. 2006). A variety of statistical models
have been developed to account for spatial correlations in
dendritic networks. These include, but are not limited to,
deriving valid covariance relationships for linear models
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(Peterson et al. 2007) and linear mixed models with moving
averages that account for hydrologic distance and flow (Ver
Hoef et al. 2006). Some models also include “tail-up,” “tail-
down,” or “two-tail” correlations to account for directional
autocorrelation (Peterson and Ver Hoef 2010, Ver Hoef and
Peterson 2010). Additionally, block Kriging has been used
for spatial averaging (Isaak et al. 2017) and splines account-
ing for network topology and confluence points have been
used effectively to model nonlinear trends in stream net-
works (Donnell et al. 2014).
While these models provide improved inference for many

types of data, there are limitations with the current
approaches. Current models account for spatial correlations
but do not allow for changing spatial correlations over time
as with spatiotemporal models (Peterson et al. 2013). A sec-
ond limitation is the inability to distinguish between process
and observation error to account for imperfect detection
(Peterson et al. 2013). When performing count surveys of
organisms, the probability of detecting each individual in
the population is often <1 (imperfect). This results in a prob-
lem of inference regarding the populations and environmen-
tal effects on the population, particularly when the
probability of detection is variable in time and space. To
address this issue, a variety of hierarchical models have been
developed separating information regarding abundance and
detection (e.g., Royle 2004, Royle and Dorazio 2008, Dail
and Madsen 2012, Zipkin et al. 2014). However, these mod-
els frequently do not account for spatial correlation among
sites explicitly (although exceptions exist; Royle and Wikle
2005). Those that do account for spatial autocorrelation
often use random group effects assuming clustered sites to
be more similar to each other than to other clusters (Hock-
ing et al. 2013, DeWeber and Wagner 2014). This coarse
grouping does not allow for autocorrelation as a function of
distance. For example, if sampling is done in a series of tran-
sects, all sites within a transect are treated the same (Hock-
ing et al. 2013, Peterman and Semlitsch 2013, Milanovich
et al. 2015) even though it is likely that adjacent sites are
more correlated than distant sites at the opposite ends of the
transect. A final limitation of current spatial stream models
is the computational challenges with analyzing large net-
works due to estimating large covariance structures (Peter-
son et al. 2013).
We describe a novel and generalizable hierarchical model

that includes spatiotemporal autocorrelation while account-
ing for imperfect detection. It also addresses unexplained
random variation in abundance not explained by determin-
istic covariates of abundance (log-normal overdispersion;
Harrison 2014). We assessed the spatial component of this
model with simulations varying the two parameters of the
Ornstein-Uhlenbeck (OU) process used to define the spatial
relationships in the network. The OU process is a stochastic
process that is similar to a continuous version of a discrete
autoregressive (AR1) model with particular properties
described in the Ornstein-Uhlenbeck process for spatial varia-
tion section of the Materials and Methods. This makes it
especially well-suited for modeling spatial relationships with
distance along a stream network. We also performed a simu-
lation study to evaluate the effects of spatial and temporal
replication on model performance. We then applied this
model to brook trout (Salvelinus fontinalis) data from the

West Susquehanna watershed within Pennsylvania, USA.
These data were collected by the Pennsylvania Boat and
Fish Commission and are similar to stream fish surveys con-
ducted by state and federal agencies and other researchers
throughout the United States. Brook trout were of particu-
lar interest as the only native trout in the eastern United
States and are threatened by climate and land-use change,
overfishing, and exotic species (Hudy et al. 2008).

MATERIALS AND METHODS

Overview

In the following, we assume that data arise from a sam-
pling design where N sites are visited in each of T years (we
use vector-matrix notation throughout) and that the same
site is never sampled twice in a given year. These N sites are
embedded within a stream network where there is only one
unique path from each site to every other site (i.e., the
stream network is acyclic), and each sample is conducted by
eliminating the possibility of movement out of the sampled
area (i.e., by placing nets above and below a selected stream
segment) and then repeatedly counting and removing all
individuals that are observed. We use the term “triple-pass
depletion sampling” for this design, given that there are
three removal samples conducted in each sampling occa-
sion. Each removal sample has a lower expected count that
the previous (because previous sampling has removed indi-
viduals), so this triple-pass design allows the detection
probability to be estimated from the slope of this decline
among passes.
We then modeled intensity k s; tð Þ at time t and site s (num-

bers per 100-m stream reach, that is, where distances are
measured along a one-dimensional stream reach) from
count data following a Poisson distribution as a log-linked
generalized linear mixed model with components represent-
ing the effect of measured habitat variables, as well as other-
wise unexplained spatial, temporal, spatiotemporal, and
independent variation. Although some measured indepen-
dent variables [x sð Þ� will correlate with the spatial patterns
of animal densities, additional unmeasured factors likely
affect the spatial patterns in densities. We include a spatial
variation component, e sð Þ, in our hierarchical regression
model to account for the fact that locations closer together
within a network may potentially have more similar densities
than more distant locations in ways not predicted by the
independent variables. This spatial correlation could result
from any number of factors such as density-dependent
movement of individuals, underlying geology, physiochemi-
cal correlation of the flowing water, or other insufficiently
measured spatially correlated network characteristics. Simi-
larly, insufficiently measured factors or complex interactions
can result in temporal autocorrelation across space and pop-
ulation dynamics dependent on densities the previous year.
We include d tð Þ as a measure of temporal variation. There
may also be interactions between space and time that influ-
ence the pattern of densities within a network and we
include m s; tð Þ to account for potential spatiotemporal varia-
tion (defined as spatial residuals that vary among years). In
many ecological systems, there are also many microhabitat
variables and other local unexplained variation that result in
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variance in excess of predictions from a Poisson distribution
when modeling count data (Harrison 2014). We include
a s; tð Þ as overdispersion that is independent among sites and
years. The overdispersion parameter is assumed to be nor-
mal, independent and identically distributed among sites
with variance r2

iid [a s; tð Þ�N 0; r2
iid

� �
] and is therefore dis-

tinct from m s; tð Þ, which is correlated among all sites s in a
given year t. We therefore specify

ln k s; tð Þð Þ ¼ x sð Þcþ e sð Þ þ d tð Þ þ m s; tð Þ þ a s; tð Þ; (1)

where x sð Þ is a row-vector of measured variables affecting
density (which includes an intercept term) and c is the esti-
mated impact of these variables on log-density (fixed-effect
regression coefficients). Additional descriptions of all model
parameters are found in Table 1.
To account for imperfect detection while sampling, we

modeled counts cd s; tð Þ for depletion pass d (d 2 1; 2; 3f g),
site (s), and year (t) assuming that each individual is equally
likely to be captured in a given depletion pass. This assump-
tion results in a Poisson distribution for the first pass

c1 si; tið Þ�Poisson pi � k si; tið Þ � uið Þ (2a)

where φi is the offset for length of stream sampled by obser-
vation i (length of survey/100 m) so all densities are the
abundance of fish per 100 m of stream length, and pi is the
probability that each individual in the vicinity of observation
i will be captured (where this capture probability potentially
varies among observations). Counts in the second and third
passes are then dependent upon not being captured in the
earlier passes

c2 si; tið Þ�Poisson 1� pið Þ � pi � k si; tið Þ � uið Þ (2b)

and

c3 si; tið Þ�Poisson 1� pið Þ2 � pi � k si; tið Þ � ui

� �
: (2c)

In the following, we include variation in detectability
among sites and years:

pi ¼ 1� exp �exp lp þ gi

� �� �
(2d)

where Eq. 2d represents an inverse complementary-log-log
(“cloglog”) link function for detection probability, given
parameter lp representing average log-detection probability,
and independent unexplained variation across sites and
years, gi �N 0;r2

g

� �
, where r2

g is an estimated parameter
governing the magnitude of variation in log-detectability
among sites and years. We use the cloglog link function so
that exp gið Þ is interpreted as the fishing efficiency for each
pass of sample i relative to the average sample. Detectability
parameters (lp, r2

g, and gi) are estimated simultaneously
with parameters representing spatial and spatiotemporal
variation in intensity k(s,t). Refer to Table 1 for summary
descriptions of all model parameters. The detection formula-
tion could easily be adjusted for repeated site visits rather
than depletion sampling where that is the preferred sam-
pling method.

TABLE 1. (A) Description of parameters used in the model and (B)
description of data used in the model.

Variable Definition Description

A) Parameters
Overall
k s; tð Þ mean abundance mean abundance at time t and

site s
cT coefficients vector of fixed-effect coefficients

on abundance
Detection
lp detection rate mean log-rate of capturing an

individual given that it is present
at site s and time t (“log-
detection rate”)

gi variation in
detection

variation in log-detection rate
samples

r2
g detection variance variance of g ið Þ

Spatial
e sð Þ spatial

contribution
spatial contribution to abundance
following an Ornstein-
Uhlenbeck (OU) process

r2
s sð Þ spatial variance variance between site s and its

parent-site sparent following an
OU process

hɛ spatial
decorrelation per
kilometer

exponential spatial decay rate in
the correlation between parent
and child nodes

r2
e asymptotic spatial

variation
parameter governing asymptotic
variation in the spatial OU
process for two sites that are far
apart

qs sð Þ spatial correlation spatial correlation for site s and
its parent-site sparent, resulting
from an OU process

Temporal
d tð Þ temporal variation temporal variation in abundance

resulting from AR1
autoregressive process

qd temporal
correlation per
year

temporal correlation in the
annual AR1 process

r2
t temporal variance variance describing the temporal

AR1 process
Spatiotemporal
m s; tð Þ spatiotemporal

variation
spatiotemporal variation in
abundance resulting from OU
process

r2
st sð Þ spatiotemporal

variance
spatiotemporal variance between
site s and its parent-site sparent

qst spatiotemporal
correlation per
year

temporal decay rate of
spatiotemporal variation,
representing correlation for a
given site in year t and year t + 1

qt sð Þ spatiotemporal
correlation

spatiotemporal correlation
between site s and its parent-site
sparent, resulting from an OU
process

hυ spatiotemporal
decorrelation per
kilometer

spatial decay rate for
spatiotemporal variation

r2
t asymptotic

spatiotemporal
variance

parameter governing asymptotic
variance describing the
spatiotemporal OU process for
two sites that are far apart

Independent
a s; tð Þ overdispersion random log-normal variation

beyond Poisson expectation
(also termed overdispersion or
nugget)
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Spatiotemporal correlations on a stream network

Working within a dendritic stream network, Euclidean dis-
tances are unlikely to represent the spatial similarity of popu-
lation dynamics. Therefore, we instead approximate the
similarity between two sites (i.e., correlations in spatial varia-
tion e sð Þ and spatiotemporal variation m s; tð Þ by the mini-
mum distance between sites along the stream network
(hydrologic distance). To do so, we augment the set of sam-
pled sites (termed “sampling nodes”) with a set of “branching
sites” (termed “branching nodes”) where two streams join.
We then identify the “root” of the network as the node that
is downstream of all other nodes in the network. We then
move upstream from this root node and identify the nearest
node along the network (or nearest nodes if the root is a
branching node). In this case, we label the root node as the
“parent” and the nearest node (or nodes) as “children.” Then
starting from these children, we again move upstream to the
nearest node or nodes and again record the parent–child
relation between these nodes. This process is continued until
we have reached the headwaters (or the highest sampling
nodes) in each stream in the network. This description of the
network has the important characteristics that each node is
the child in one, and only one, parent–child relationship.
We also assume that changes in variables along the net-

work are “memory-less,” that is, the value of a variable ɛ
defined at a set of points along a stream segment follows a
first-order Markov process where sites that are not con-
nected by a child–parent relationship are statistically inde-
pendent given a fixed value of ɛ at all other sites. This
property arises from the assumption that the value of ɛ var-
ies while moving along a stream network following a first-
order stochastic differential equation.
Given these two properties (that the stream network is

acyclic and that spatial variation is a first-order Markov
process), we can calculate the conditional probability distri-
bution for e sð Þ each site as a function of its value e sparent

� �
at the parent node sparent for that site s, and the distance
js� sparentj between s and its parent sparent. This allows us to

factor the joint probability of a spatial variable Pr eð Þ into a
series of easy-to-calculate conditional probabilities

Pr eð Þ ¼
YS

s¼1

Pr e sð Þje sparent
� �� �

: (3)

We further assume that variation in ɛ arises from a mean-
reverting Weiner process with movement along the network.
A Weiner process is a continuous stochastic process with
independent increments often used to describe Brownian
motion. Adding a mean-reverting component results in an
Ornstein-Uhlenbeck process with the properties of being
stationary, Gaussian, and Markovian for the right-hand side
of Eq. 3, as we now describe in detail. This model is identi-
cal to the tail-down exponential model from Ver Hoef and
Peterson (2010), although defining it as we do allows for
easy computation within standard computational software.

Ornstein-Uhlenbeck process for spatial variation

We used the Ornstein-Uhlenbeck process to represent the
spatial relationships along the network. The OU process
implies that a child node will be correlated with its parent
node as a function of distance following

e sð Þje sparent
� ��N qs sð Þ � e sparent

� �
; r2

s sð Þ� �
: (4)

The variance, r2
s sð Þ, for site s conditional on the value of

its parent sparent given an OU process is

r2
s sð Þ ¼ r2

e

2he
1� e�2he js�sparentj

� �
; (5)

where hɛ is the exponential rate of decay in correlation
between child and parent nodes with larger values represent
less correlation, js� sparentj is the stream distance between
parent and child nodes, and r2

e governs the asymptotic vari-
ance from an OU process for two sites that are far apart.
The expected correlation between points in the network is
then represented by qs sð Þ where

qs sð Þ ¼ e�hejs�sparentj: (6)

Eqs. 5 and 6 are specified such that the pointwise variance
of e sð Þ (i.e., the variance e sð Þ was drawn again from the same
stochastic process) is r2

e � 2heð Þ�1:

First-order autocorrelation for temporal variation

We include a temporal term d tð Þ for each year t to repre-
sent years that are higher or lower than expected across all
sites. We model vector d (representing d tð Þ in all years) using
first-order autocorrelation

d ¼ MVN 0; r2
t Rd

� �
(7)

where r2
t is the variance in this temporal term, and Rd is the

correlation matrix for a first-order autocorrelation process

Rd t; t�ð Þ ¼ qjt�t�j
d (8)

TABLE 1. (Continued)

Variable Definition Description

r2
iid overdispersion

variance
variance term for the Poisson log-
normal overdispersion term
[at(s)]

B) Data
x sð Þ covariate data row vector of measured variables

affecting abundance (which
includes an intercept term)

cd s; tð Þ count data counts of fish for depletion pass d
(d 2 1; 2; 3f g), site and year t
assuming that each individual is
equally likely to be captured in a
depletion pass given that it was
not removed during a previous
pass

φi offset relative length of stream surveyed
to standardize abundance to fish
per 100 m (offset = lengthsurvey/
100)

Note: See Materials and Methods for relevant equations and
detailed descriptions.
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where Rd t; t�ð Þ is the correlation between years t and t*,
separated by |t � t*| years, and qd is an estimated parameter
representing the correlation in d for two adjacent years.

Ornstein-Uhlenbeck process for spatiotemporal variation

We similarly used the OU process to represent the spa-
tiotemporal relationships along the network. We use the vec-
tor m sð Þ to represent the spatiotemporal term m s; tð Þ for all
years t, and it varies along the network as an OU process

m sð Þ�MVN qt sð Þ � m sparent
� �

; r2
st sð ÞRt

� �
(9)

where r2
st sð Þ is again the spatiotemporal variance for site s

given the vector m sparent
� �

for its parent, sparent

r2
st sð Þ ¼ rt

2

2ht
1� e�2htjs�sparentj

� �
: (10)

The parameter qt sð Þ is the correlation due to spatial simi-
larity

qt sð Þ ¼ e�htjs�sparentj (11)

and Rυ is the correlation due to temporal similarity, which
we assume follows first-order autocorrelation (Eq. 8 but
replacing qd with qst, where qst is an estimated parameter
representing the temporal correlation between two adjacent
years in spatiotemporal variation m s; tð Þ. We assumed that
the decorrelation distance was identical for spatial and spa-
tiotemporal variation (i.e., ht ¼ he), but the variance in the
OU process was independent for the spatial and spatiotem-
poral components. This assumption could be relaxed in the
future but may require large networks with a large amount
of spatially and temporally replicated data to fit, potentially
beyond what is available for most studies.

Parameter estimation

We estimate parameters within a mixed-effects model,
while treating variation in detectability (g s; tð Þ) as well as
overdispersion (a s; tð Þ), temporal (d tð Þ), spatial (e sð Þ), and
spatiotemporal (m s; tð Þ) variation in density as random
effects. We estimate parameters by maximizing the marginal
likelihood function with respect to fixed effects, where the
marginal likelihood function is calculated using the Laplace
approximation to approximate the integral across random
effects. We confirm that the model is converged by ensuring
that the gradient of the marginal likelihood with respect to
each fixed effect is within �0.001 and that the Hessian
matrix is positive definite. Parameter estimation was con-
ducted using Template Model Builder (Kristensen et al.
2016) within the R statistical platform (R Development
Core Team 2016). We note that the Ornstein-Uhlenbeck
process results in an exponential correlation function, and
Ver Hoef et al. (2006) show that this correlation function is
valid (i.e., will result in a positive definite covariance). Log-
density is the sum of a series of multivariate normal random
effects (Eq. 1, with the exception of x sð Þc where c is a fixed
effect) and each multivariate normal distribution is valid
(has a positive definite covariance). Therefore, log-density is

itself valid, as follows from the properties of an additive
covariance function. Further research could formally
decompose the proportion of variance in log-density that is
attributed to each additive component in Eq. 1, although
we do not do so here. Future studies could also expand
upon or modify the framework used here, although changes
may not be identifiable (i.e., the Jacobian matrix of sufficient
statistics for the data with respect to parameters might be
rank-deficient) or estimable (the Hessian matrix of the mar-
ginal log-likelihood at the maximum likelihood estimator
may not be positive definite). We recommend future analy-
ses check estimability using automatic differentiation (as we
have done here), and future theoretical work should examine
identifiability in spatiotemporal models (e.g., following
methods in Hunter and Caswell 2009)

Spatial simulations

We conducted simulations to evaluate model perfor-
mance. The first set of simulations was designed to test the
ability to estimate spatial correlations and how well the
model estimated abundance with varying levels of spatial
autocorrelation compared with a nonspatial model. We
included a single covariate on density that differed by loca-
tion but was not spatially autocorrelated (cT = [2.3,0.5];
intercept, covariate coefficient). We used a mean density of
10 fish per 100 m (x1(s) = ln(10)). Both models were identi-
cal except for the inclusion of the spatial variation compo-
nent (e sð Þ). These models were performed for a single year
and assuming no extra-Poisson overdispersion so temporal,
spatiotemporal, and independent components, d tð Þ, m s; tð Þ,
and a s; tð Þ were not included in the models. We assumed a
constant detection rate of 0.5 (lp ¼ ln 0:5ð Þ) and three-pass
depletion sampling at each location. Therefore, the probabil-
ity of detecting an individual that remained in the stream on
any given pass was 50%.
For the spatial model, we simulated data with all combi-

nations of hɛ in {0.5, 1, 2, 3} and rɛ in {0.1, 0.25, 0.5, 0.75}.
These values of hɛ represent a large range in correlations
such that when hɛ = 0.1 then qs sð Þ ¼ 0:607 whereas when
hɛ = 3 then qs sð Þ ¼ 0:050 at points 1 km apart.
We ran 200 simulations for each combination of hɛ and

rɛ and fit each simulated data set with the spatial model
described (single year with no temporal or spatiotemporal
variation) and with a nonspatial model. We varied the spa-
tial decorrelation per kilometer, hɛ, and the asymptotic
spatial variance, rɛ, independently, but only examine the
effects of the combined spatial component (hɛrɛ) because
hɛ and rɛ are not independently identifiable. We ran the
simulation using the White River watershed in Vermont
with 359 nodes because it was a reasonably sized network
with sufficient distances and numbers of nodes to be
diverse but not so large as to make simulation of the net-
work correlations excessively long. Distances between child
and parent nodes ranged from 0.17 to 5.13 km with a
mean of 1.13 km. The R code for simulating the data is
available online.5

5 https://github.com/djhocking/Trout_GRF/blob/master/Code/Spa
tial_Simulations.R
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Spatiotemporal simulation experiment

We also wanted to understand the effect of spatial and
temporal replication on model performance. We simulated
300 independent data sets for the White River in Vermont
over 20 yr for each of the 359 nodes. For each simulation,
we randomly sampled the data to represent surveying vari-
ous numbers of sites and years (all combinations of 4, 8, 10,
15, and 20 yr with 25, 50, 100, and 359 sites). For each sur-
vey combination and simulation, we fit the spatiotemporal
model including spatial, temporal, and spatiotemporal
dynamics (matching the data generating model) and a tem-
poral model with no spatial or spatiotemporal dynamics.
For each simulation, we used ht ¼ he ¼ 0:3, rɛ = 0.5, qd =
0.6, rt = 0.2, rυ = 0.4, qst = 0.7, detection probability P =
0.5, and density coefficients cT ¼ 2:3; 0:2½ �, where the first
value in cT is the log-mean intercept and the second value is
the coefficient (slope) of a site-level covariate. All R and
TMB functions for these simulations can be found in the
Data S1 supplemental materials with additional information
in Metadata S1.

Brook trout case study

As the only trout native to eastern U.S. streams and rivers,
brook trout are a species of social and economic importance
in the region. State and federal agencies as well as organiza-
tions such as Trout Unlimited and the Eastern Brook Trout
Joint Venture (EBTJV) have particular interest in supporting
viable populations of brook trout. As such, there have been
numerous recent modeling efforts to estimate occupancy,
abundance, and population dynamics in response to land-
scape conditions, climate change, and management actions
(DeWeber and Wagner 2014, Kanno et al. 2015, Letcher
et al. 2015, Bassar et al. 2016). However, these models gen-
erally do not account for spatial correlations beyond using
random regional, watershed, or sub-basin effects.
We identified the West Susquehanna, Pennsylvania water-

shed for our case study because it was a moderately large net-
work with a high density of good quality stream fish data over
a long-time period. The electrofishing data were collected by
the state of Pennsylvania Boat and Fish Commission using
standard methods common across agencies and researchers
throughout the eastern United States. We did not use the West
Susquehanna watershed in our simulations because it is much
larger than the White River network, with many more conflu-
ences, which would greatly slow the data simulation.
The West Susquehanna watershed contained 11,220

nodes, comprised of 349 survey sites and 10,871 stream
reaches. Sites were surveyed a total of 34 yr from 1981 and
2014. There was a total of 683 site visits with a mean of 2.0
and a range of 1–21 visits per site. The total drainage area of
the watershed was 18,068 km2 and the smallest stream had a
cumulative drainage area of 0.4 km2. The median drainage
area was 4.4 km2. The mean distance between nodes in the
network was 1.37 km and ranged from 0.001 to 11.61 km
with a median of 1.11 km.
The watershed was primarily forested (mean percent for-

est cover = 79%) but with a range from 0% to 100% within
individual stream catchments. We used percent forest cover
as a fixed-effect covariate in our model along with surficial

coarseness, mean air temperatures from the summer (previ-
ous year), fall (previous year), winter, and spring prior to
summer fish surveys, and mean daily precipitation for the
same seasons. Daily temperature and precipitation data were
obtained from daymet (Thornton et al. 1997, 2016) and spa-
tially aggregated to the catchment scale. The surficial coarse-
ness was the percentage of the catchment area covered by a
parent soil material with texture described as sandy, gravelly,
or a combination of the two. These classifications were
obtained from the USDA National Resources Conservation
Sciences Soil Survey Geographic Database (SSURGO; Soil
Survey Staff 2015). Forest cover data were obtained from
the 2011 National Land Cover Database (NLCD; Homer
et al. 2015). All basin characteristics were calculated as spa-
tial sums (precipitation) or means within each zonal catch-
ment layer as delineated based on the truncated
NHDHRDV2 flowlines. All details and ArcPython scripts
are available online.6 The covariate summary statistics for
the West Susquehanna watershed are presented in Table 2.
We used the National Hydrography Dataset high-resolu-

tion flowlines truncated to >0.75 km2 drainage area for spa-
tial consistency and exclusion of highly ephemeral streams
(flowlines available online).7 Any survey locations or other
points of interest were then snapped to the flowlines. All sur-
vey points and confluences, including the base of the network
and the terminal headwaters, were considered network nodes.
Except for the base node, the distance from each child node
was calculated to its downstream parent node to define the
network relationships and distances. All hydrography pro-
cessing was done using ArcPython in ArcGIS v10.2 (Envir-
onmental Systems Research Institute, Redlands, California,
USA). The full description of the process, scripts, and links
to the hydrography data is archived online.6 The hydrography
for the region from Maine to Virginia, USA, can be down-
loaded by hydrologic unit code 2 (available online).8 All

TABLE 2. Summary table of covariate values for the West
Susquehanna watershed.

Variable Mean Minimum Maximum

Forest cover (%) 79.15 0 100
Surficial coarseness (% sandy/
gravely)

6.62 0 100

Previous summer mean
temperature (°C)

17.74 15.21 21.66

Previous fall mean temperature
(°C)

3.49 �0.09 7.3

Winter mean temperature (°C) �1.77 �7.99 2.87
Spring mean temperature (°C) 14.63 10.31 17.31
Previous summer mean
precipitation (mm)

3.78 1.59 8.92

Previous fall mean precipitation
(mm)

2.99 1.29 5.01

Winter mean precipitation (mm) 2.58 1.1 4.73
Spring mean precipitation (mm) 2.91 1.42 6.9

Note: Susquehanna watershed was defined by catchment draining
into each stream reach.

6 http://conte-ecology.github.io/shedsGisData/
7 https://nhd.usgs.gov/index.html
8 http://ecosheds.org/assets/nhdhrd/v2/
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continuous covariates were standardized by subtracting the
mean and dividing by the standard deviation for computa-
tional efficiency. None of these variables had Pearson corre-
lations >0.60.

Model selection

For young of the year (YOY) and adult brook trout inde-
pendently, we compared eight models with different combi-
nations of spatial, temporal, and spatiotemporal
correlations (2 9 2 9 2 factorial design; Table 3). All other
components of the model including fixed-effect covariates
were identical in all models. Meteorological conditions dur-
ing the previous summer were used in the adult models but
were excluded in the YOY models because spawning does
not occur until the fall. We used Akaike’s information crite-
rion (AIC) to select the best model balancing model fit and
model complexity (Burnham 2004, Burnham et al. 2010).

RESULTS

Spatial simulations

Overall, we found that the spatial model had greater pre-
cision for estimates of covariate effects or population density
than the nonspatial model. We found that the spatial model
estimated the spatial component (hɛrɛ) well when there was
strong spatial correlation but tended to slightly underesti-
mate the component when the spatial decorrelation was low
(hɛ large; Fig. 1). The spatial model estimated the mean
intensity (expected fish per 100 m) across the watershed
much better than the nonspatial model when there was mod-
erate to high spatial decorrelation rates (Fig. 1) and the
mean uncertainty (SE) of the estimated intensity was much
larger for the nonspatial model compared with the spatial
model when the spatial decorrelation was large (Fig. 1). We
used the difference between model predictions and true val-
ues to calculate the root-mean-squared error (RMSE) as an
assessment of model predictive accuracy. The RMSE was
far larger for the nonspatial model compared with the spa-
tial model across all values of hɛ (Fig. 1), indicating that

abundance estimates at individual locations were much more
accurate for the spatial model. This difference in uncertainty
was largest with high levels of spatial correlation. The fixed-
effect coefficient for the single covariate (cT) was estimated
well across all values of hɛ, but the variation in this estimate
was slightly smaller for the spatial model, especially at
higher levels of spatial correlation (Fig. 1).
The range of rɛ also significantly influenced the parame-

ter estimates and the differences between spatial and non-
spatial models. The spatial model recovered hɛrɛ well with
very slight underestimation on average, except when rɛ was
small (0.1), which resulted in good recovery on average but
extremely high variation among simulations (Fig. 2). The
spatial and nonspatial models performed similarly in the
estimation of mean intensity across the watershed when the
true value of rɛ was small but the spatial model was more
accurate and more precise compared with the nonspatial
model as the level of rɛ increased (Fig. 2). The uncertainty
in mean network intensity went up for the nonspatial model
as rɛ increased but was constant for the spatial model across
levels of rɛ (Fig. 2). The RMSE was again much smaller for
the spatial model compared with the nonspatial model as rɛ

increased. The variability in the RMSE also increased
greatly for the nonspatial model as rɛ increased (Fig. 2).
The fixed-effect coefficient was estimated well for both mod-
els but the uncertainty increased in the nonspatial model as
rɛ increased (Fig. 2).

Spatiotemporal simulation study

We found the mean network intensity was estimated fairly
well for both the spatial and nonspatial models, but both
models tended to slightly underestimate abundance slightly
when few years were surveyed (Fig. 3). The value of hɛrɛ

was underestimated with <15 yr of data while the estimates
of hυrυ were proportionally overestimated with <15 yr of
data (Fig. 3). This same pattern was observed with fewer
than 100 sampled sites (Fig. 4). Similarly, for both the spa-
tial and nonspatial model, it took 15–20 yr to accurately
recover the temporal autocorrelation, although it was still
slightly underestimated by the spatial model. The variability
in the temporal process was recovered well with the spatial
model regardless of the number of years surveyed but the
nonspatial model had more variation among simulations
with increasing years surveyed (Fig. 4). The value of the
fixed-effect covariate, c, was estimated well for both models
regardless of the number of years sites were sampled but the
variation in the estimation was consistently lower for the
spatial model (Fig. 3).
The number of sites sampled similarly influenced the esti-

mation of the spatial and spatiotemporal components, with
an increasing number of sites improving the estimates, espe-
cially from 25 to 100 sites (Fig. 4). The RMSE improved
with an increasing number of sites sampled for the spatial
model and was lower (more accurate) for the spatial model
with 100 or more sites compared with the nonspatial model
(Fig. 4). The fixed-effect coefficient was recovered well for
both models although the estimate was biased low for the
nonspatial model with only 25 sites. The precision in the
fixed-effect estimate improved with the number of sites sam-
pled and was consistently better for the spatial model.

TABLE 3. Description of models compared with the Akaike
information criterion (AIC) for adult and young of the year
(YOY) brook trout populations in the West Susquehanna
watershed.

Number Model Model components

1 basic ln k s; tð Þð Þ ¼ cTx sð Þi þ a s; tð Þ
2 spatial (S) ln kðs; tð ÞÞ ¼ cTx sð Þi þ e sð Þ þ a s; tð Þ
3 temporal (T) ln kðs; tð ÞÞ ¼ cTx sð Þi þ d tð Þ þ a s; tð Þ
4

S + T ln k s; tð Þð Þ ¼ cTx sð Þi þ e sð Þ þ d tð Þ
þ a s; tð Þ

5 spatiotemporal
(ST)

ln kðs; tð ÞÞ ¼ cTx sð Þi þ m s; tð Þ þ a s; tð Þ

6
S + ST ln kðs; tð ÞÞ ¼ cTx sð Þi þ e sð Þ þ m s; tð Þ

þ a s; tð Þ
7

T + ST ln kðs; tð ÞÞ ¼ cTx sð Þi þ d tð Þ þ mt sð Þ
þ a s; tð Þ

8
S + T + ST ln kðs; tð ÞÞ ¼ cTx sð Þi þ e sð Þ þ d tð Þ

þ m s; tð Þ þ a s; tð Þ
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Despite reasonable estimates of mean abundance and fixed
effects in many simulations, the nonspatial model (Model 3
in Table 3) generally did not sufficiently recover the hetero-
geneity and spatial pattern in density as seen in Fig. 5.

Brook trout case study

The top YOY model included temporal and spatiotempo-
ral components. The null model was the worst and any
model with a spatial or spatiotemporal component was
ranked higher than the temporal-only model (Table 3). For
adult brook trout, the spatiotemporal model and the tempo-
ral plus spatiotemporal model were the top two models with
a DAIC of 0.3 (Table 4). We chose to draw inference from
the temporal plus spatiotemporal model for the easiest
direct comparison with the YOY. The most complex model

(containing temporal, spatial, and spatiotemporal compo-
nents from Eq. 1) failed to converge with the adult data and
was excluded from model comparison.
From the top models, we estimated the temporal and spa-

tiotemporal model parameters along with the fixed effects,
detection probabilities, and overdispersion terms. Adults
exhibited strong temporal correlation per year (qd = 0.59)
with low variability (rt = 0.16), whereas YOY exhibited no
temporal correlation per year (qd = �0.05) but high stochas-
tic temporal variability (rt = 0.76). The estimated values of
the spatiotemporal decay hυ were at the lower end of what we
tested with simulations for both YOY (0.13) and adults
(0.16), indicating high spatiotemporal correlation (~50% at
5 km; Fig. 6). The estimates of the spatiotemporal standard
deviation rυ were high for YOY (0.65) and adults (0.59). The
combination of the two parameters indicates extremely high

0

1

2

3

S
E

 o
f m

ea
n 

de
ns

ity

0

20

40

60

80

R
M

S
E

0

20

40

60

80

M
ea

n 
de

ns
ity

0

1

2

3

0 1 2 3

True spatial decorrelation, θε

S
pa

tia
l c

om
po

ne
nt

,θ
εσ

ε

0.40

0.45

0.50

0.55

0.60

0 1 2 3

True spatial decorrelation, θε

Fi
xe

d 
ef

fe
ct

,γ

Spatial
False
True

FIG. 1. Parameter estimates across different values of hɛ (spatial decorrelation per kilometer) from the spatial simulation study varying
hɛ and rɛ (the asymptotic spatial variance; Eq. 5). Lower values of hɛ represent higher correlation with distance. Parameter estimates’ accu-
racy (root mean square error, RMSE) were compared for the spatial model (blue; Model 2 in Table 3) and a nonspatial model (red; Model 1
in Table 3). Values in the box plots represent the combined uncertainty from 200 simulations and variation in simulated levels of rɛ. Red
points represent the true simulation values. The midline represents the median and the boxes extend from the 25th to the 75th percentile
(Interquartile range). Whiskers extend from the smallest to the largest observation but not beyond 1.5 times the interquartile range.

October 2018 SPATIOTEMPORAL STREAM ABUNDANCEMODEL 1789



spatiotemporal autocorrelation, which is revealed by the very
high estimate of temporal decay qst of 0.98 and 0.97 for YOY
and adults, respectively (Table 5). Forest cover, the previous
year’s mean summer temperature, spring temperature, and,
to a lesser extent, the previous fall mean temperature were all
important predictors of adult abundance. For YOY, only for-
est cover and mean spring temperature had substantial
effects on abundance. Seasonal precipitation did not influ-
ence abundance for YOYor adults (Table 5).

DISCUSSION

We developed a geostatistical model for estimating animal
densities within dendritic networks while accounting for
imperfect detection. Spatial simulations demonstrated
improved estimates of animal densities even at relatively low
levels of spatial correlations compared with traditional non-
spatial models (Fig. 1). Even when the spatial decay rate
(hɛ) was one (36% correlation at 1 km and virtually zero

correlation at 10 km), the spatial model had significantly
higher predictive accuracy of reach-level density. There were
no scenarios where the spatial model performed worse than
the nonspatial model for estimating mean density.
Similarly, we demonstrated the benefits of our model over

a large range of years and surveyed sites through simulation.
The accuracy improved with increasing number of years that
sites were surveyed (Fig. 3; RMSE). However, there was a
large improvement in recovery of the spatial and spatiotem-
poral components of the model given 15–20 yr of data.
Although there is moderately high uncertainty in the estima-
tion of the spatial and spatiotemporal components (in
Fig. 3), this is likely due in part to combining simulation
replication uncertainty with variation among sites while
holding the number of years constant. Similarly, the varia-
tion in recovery of the spatial and spatiotemporal compo-
nents was likely inflated (in Fig. 4) because of combining
simulation uncertainty with variation in the number of years
surveyed while only holding the number of sites constant.
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However, the spatial model showed clear improvement in
recovery of the spatial correlation and accuracy of local den-
sity estimation (RMSE) with an increased number of sur-
veyed sites. Based on these limited simulations, we
recommend aiming for at least 15 yr of data for 100 sites
(given spacing of sites similar to those considered here).
However, further investigation is warranted to explore the
effects of having a collection of sites that are visited at differ-
ent intervals as is the case with many freshwater fisheries
data sets. It is possible that only a subset of sites would have
to be visited each year to adequately characterize the spa-
tiotemporal dynamics. Although this may appear as a large
number of sites and years, many state agencies already have
these data from long interest in freshwater fisheries stock
status. For some watersheds, multiple agencies and NGOs
might have to pool data to have sufficient replication fur-
thering the argument for regional cross-boundary databases.
When fewer years of data are available, the reduced spatial
model without the temporal or spatiotemporal components
can be run on each year of data with improved estimation in
comparison with a traditional nonspatial model (Figs. 2, 3).
The non-spatiotemporal model was also good at recover-

ing densities but did poorly at estimating temporal

correlations and variability (Figs. 4, 5). Given the large
improvements of the spatial model compared with the non-
spatial model in the single year simulation (Figs. 2, 3), this
may not be a general pattern and may depend on network
topology and sampling density within the network and over
time. Additionally, the nonspatial model will not be as useful
for estimating local densities in unsampled stream reaches.
Many management actions occur at small scales and there-
fore understanding local population dynamics is important
for prioritizing local actions and understanding the effects
of those actions, particularly in an adaptive management
framework. Such a situation could occur for decisions that
are repeated and adjusted based on population responses
such as stocking programs or setting stream-level fishing
regulations (e.g., barbless hooks, catch and release, take lim-
its). Even for one-time decisions such as in-stream habitat
modification, and dam or culvert removal at a local site, it is
important to have good estimates of local, rather than just
watershed, abundance because the local change in abun-
dance can help prioritize the location of the next project.
This spatiotemporal model can readily be applied to exist-

ing standard electrofishing data from state and federal agen-
cies. Using this model with brook trout data collected the
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Pennsylvania Boat and Fish Commission, we demonstrated
improved model fit compared with basic nonspatial models
even accounting for increased model complexity (i.e., using
AIC). For adult brook trout, the spatiotemporal model and
the model with temporal and spatiotemporal components
outperformed all other models (Table 4). Similarly, the tem-
poral plus spatiotemporal model performed best with the
YOY data (Table 4). In addition to evidence from model
comparisons, the estimated coefficient values for brook
trout data fell within our range of simulations indicating
that the estimates are reliable. Removing spatial or temporal
covariates could change which model was selected based on
AIC. It would also change the estimate of the spatial and
spatiotemporal correlations because they can be interpreted
as the latent correlations not explained by the fixed effects
resulting from unmeasured, complex, biotic and abiotic
interactions exhibiting spatial autocorrelation.
Both YOY and adult densities were positively associated

with forest cover and negatively associated with spring tem-
peratures (Table 5). This finding is similar to brook trout
model results from a rangewide occupancy model (Wagner
et al. 2014). A recent review of salmonid fish response to
environmental drivers (Kovach et al. 2016) also found

negative effects of increased seasonal temperature on trout
populations, supporting our estimate of a strong negative
summer temperature effect. Similar results were also found
for an Adirondack lake (Robinson et al. 2010), streams in
West Virginia (Huntsman and Petty 2014) and Michigan
(Grossman et al. 2012), and from demographic models for
brook trout in Shenandoah National Park (SNP; Kanno
et al. 2015, 2016). We also found that temperature had a lar-
ger effect on YOY than on adults. Similarly, Bassar et al.
(2016) found that population dynamics in a small stream
system were largely driven by the effects of yearly tempera-
ture variation on YOY.
We estimated only weak relationships between seasonal

precipitation and trout density. This is in stark contrast to
the strongly negative effects of winter precipitation found in
SNP (Kanno et al. 2015, 2016). Topographical and geologi-
cal differences may help explain the divergent effects of pre-
cipitation estimated for the two study areas. Trout habitat in
SNP is high elevation and high gradient while the sites we
studied are more variable in elevation, aspect, and gradient
potentially obscuring precipitation effects. It is likely that
precipitation will have a much greater effect on trout popu-
lations in high gradient, nonporous sites. It is also likely that
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we underestimated the importance of precipitation in gen-
eral because we estimated effects of seasonal precipitation
means over an area without large spatial variability in pre-
cipitation patterns. Floods can have dramatic effects on sal-
monids, including year class loss (Letcher and Terrick 1998,
Carline and Mccullough 2003) and, in extreme cases, local
extirpation (Vincenzi et al. 2014). Recolonization ability,
habitat complexity, and high fecundity, however, all con-
tribute to high resilience of brook trout populations to
floods (Nislow et al. 2002, Roghair et al. 2002, George et al.
2015). It is possible that this model could be used to assess
the spatial and spatiotemporal decay rates related to the
effects of major flood events such as hurricanes in the
future. This could be important as flood frequency and
severity is expected to increase with climate change in some
parts of the world (Hirabayashi et al. 2013).
Adult brook trout exhibited higher temporal correlation

and less unexplained random variation (overdispersion SD;
Table 6) in density compared with YOY. This supports previ-
ous findings of high YOYvariability due to temperature and
flow conditions along with other stochastic events (Carlson

and Letcher 2003, Xu et al. 2010, Kanno et al. 2015, 2016).
Both adults and YOY densities exhibited similar levels of
spatiotemporal correlation with relatively slow decorrelation
with distance as evidenced by the low spatiotemporal decay
rates (hυ = 0.16, and 0.13, respectively) and high asymptotic
spatiotemporal variances (Table 6). The effect of these
parameters can be seen in Fig. 6, which shows correlation
with distance. For example, correlation is approximately
50% at 5 km and 25% at 10 km for YOY. Adult correlations
are only slightly lower than for YOY with hydrologic dis-
tance. There is virtually no autocorrelation in densities of
YOY or adults at distances beyond 20 km. This suggests
that these populations are generally operating independently
(minimal density-dependent reshuffling through movement)
and that landscape, land-use, and meteorological variables
are sufficient to describe any long-distance correlations in
brook trout population dynamics. Our model can also be
used to predict densities at unsampled sites to aid natural
resource managers in making decisions at locations when
there is insufficient time to collect local data prior to when
an impact or management action will occur.
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FIG. 5. Example of a spatiotemporal simulation of the abundance along a stream network over time (intensity). The top row shows the
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tributions (Model 3 in Table 3). For each simulation, we used ht ¼ he ¼ 0:3, rɛ = 0.5, qd = 0.6, rt = 0.2, rυ = 0.4, qst = 0.7, detection
probability P = 0.5, site-level covariate on abundance cT = 2.3, 0.2].
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This is unsurprising given the general short movements
and high genetic differentiation of brook trout over rela-
tively short distances (Whiteley et al. 2013). This exceed-
ingly high spatiotemporal correlation per year indicates a
slow rate of change in the spatial patterning (i.e., high densi-
ties sites tended to maintain relatively high densities,

TABLE 4. Comparison of brook trout models for the West
Susquehanna watershed using AIC.

Number Model AIC DAIC

Adult
5 ST 9,408 0.0
7 T + ST 9,408 0.3
4 S + T 9,583 175
2 S 9,588 180
3 T 9,783 375
1 basic 9,794 387
6 S + ST NA NA
8 S + T + ST NA NA

YOY
7 T + ST 9,592 0
8 S + T + ST 9,596 4
5 ST 9,663 71
6 S + ST 9,666 74
4 S + T 9,739 147
2 S 9,801 209
3 T 9,925 333
1 basic 10,048 456

Note: The models (6 and 8) that included spatial and spatiotem-
poral components failed to converge with adult data and were not
used in the comparison.

FIG. 6. Spatiotemporal and temporal decay curves with distance for adult and young of the year (YOY) brook trout in the West Susque-
hanna watershed for the model including temporal and spatiotemporal components. The spatiotemporal correlation, qt sð Þ, is the expected
correlation between parent and child nodes for a given distance (Eq. 11) Adults are represented by the solid red line and YOY by the dashed
blue line.

TABLE 5. Summary of parameter estimates from the model
including temporal and spatiotemporal components for adult
brook trout in the West Susquehanna watershed.

Parameter

Adult YOY

Estimate SE Estimate SE

Intercept �2.45 0.13 �3.41 0.30
Forest cover 0.82 0.12 1.12 0.16
Surficial coarseness 0.01 0.06 0.04 0.08
Summer temperature �0.26 0.05
Fall temperature 0.09 0.03 0.02 0.11
Winter temperature �0.01 0.03 0.05 0.11
Spring temperature �0.16 0.05 �0.68 0.16
Summer precipitation �0.02 0.01
Fall precipitation 0.05 0.02 0.01 0.04
Winter precipitation 0.04 0.02 �0.01 0.05
Spring precipitation 0.05 0.02 �0.06 0.06
Detection rate (lp) 1.35 0.02 1.08 0.02
Detection SD (rg) 0.21 0.02 0.30 0.02
Temporal correlation per year
(qd)

0.59 0.26 �0.05 0.21

Temporal SD (rt) 0.16 0.06 0.76 0.13
Spatiotemporal decorrelation
per year (qst)

0.97 0.01 0.98 0.01

Spatiotemporal decorrelation
per kilometer (hυ)

0.16 0.03 0.13 0.02

Asymptotic spatiotemporal SD
(rυ)

0.59 0.06 0.65 0.07

Overdispersion SD (riid) 0.36 0.04 0.53 0.04

Notes: The YOY model did not include the previous summer
temperature or precipitation since they were not yet laid as eggs.
Parameters are defined in Table 1. The first 11 parameters were
fixed effects on abundance contained in the vector of coefficients cT.
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indicating some temporal stability in local habitat quality or
preference). The limited brook trout dispersal in headwater
streams and the fine-scale variation in habitat quality com-
bine to create pockets of high abundances. For example,
stream temperatures can vary dramatically at very small spa-
tial scales due to local ground water input (Snyder et al.
2015) and topography and wood in streams can create small
pools (Bisson et al. 1987). Both cool water reaches in the
summer and pools generally create high-quality habitat for
brook trout.
In summary, we demonstrated good recovery of spatial

and temporal components and good accuracy in estimating
local fish densities across a stream network. Our model can
be used to improve precision when estimating local densities
in a network compared with traditional nonspatial models
while providing additional information about the spatiotem-
poral population dynamics of these organisms. Given that
the spatial model always performed as well or better than
the nonspatial model, we recommend our approach for
analysis of data even when there is previous indication of
slight spatial correlations
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